Extensions 1→N→G→Q→1 with N=C42 and Q=C3⋊S3

Direct product G=N×Q with N=C42 and Q=C3⋊S3
dρLabelID
C42×C3⋊S3144C4^2xC3:S3288,728

Semidirect products G=N:Q with N=C42 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C42⋊(C3⋊S3) = (C4×C12)⋊S3φ: C3⋊S3/C3S3 ⊆ Aut C42366+C4^2:(C3:S3)288,401
C422(C3⋊S3) = C12216C2φ: C3⋊S3/C32C2 ⊆ Aut C42144C4^2:2(C3:S3)288,729
C423(C3⋊S3) = C1222C2φ: C3⋊S3/C32C2 ⊆ Aut C42144C4^2:3(C3:S3)288,733
C424(C3⋊S3) = C122⋊C2φ: C3⋊S3/C32C2 ⊆ Aut C4272C4^2:4(C3:S3)288,280
C425(C3⋊S3) = C4×C12⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C42144C4^2:5(C3:S3)288,730
C426(C3⋊S3) = C124D12φ: C3⋊S3/C32C2 ⊆ Aut C42144C4^2:6(C3:S3)288,731
C427(C3⋊S3) = C1226C2φ: C3⋊S3/C32C2 ⊆ Aut C42144C4^2:7(C3:S3)288,732

Non-split extensions G=N.Q with N=C42 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C42.1(C3⋊S3) = C122.C2φ: C3⋊S3/C32C2 ⊆ Aut C42288C4^2.1(C3:S3)288,278
C42.2(C3⋊S3) = C12.57D12φ: C3⋊S3/C32C2 ⊆ Aut C42288C4^2.2(C3:S3)288,279
C42.3(C3⋊S3) = C4×C324Q8φ: C3⋊S3/C32C2 ⊆ Aut C42288C4^2.3(C3:S3)288,725
C42.4(C3⋊S3) = C126Dic6φ: C3⋊S3/C32C2 ⊆ Aut C42288C4^2.4(C3:S3)288,726
C42.5(C3⋊S3) = C12.25Dic6φ: C3⋊S3/C32C2 ⊆ Aut C42288C4^2.5(C3:S3)288,727
C42.6(C3⋊S3) = C4×C324C8central extension (φ=1)288C4^2.6(C3:S3)288,277

׿
×
𝔽